

SiO₂ and SiN etching by Low Global Warming Potential Gas

Since the 1997 Kyoto Protocol (COP3), many people have been attempting to stop global warming. Scientists who conduct research using the dry etching and deposition processes are no- exception to the requirement to reduce greenhouse gas (GHG) exhausts. Since 1995 (before COP3), we at SAMCO have been researching systems that capture and disintegrate perfluorocarbon compounds (PFCs).

This article introduces SAMCO's recent research on dry etching with carbonyl difluoride (COF₂), which has lower global warming potential (GWP) than tetrafluoromethane (CF₄) and trifluoromethane (CHF₃).

Introduction

 CF_4 and CH_3 gases are commonly used in dry etching of silicon dioxide (SiO₂) and silicon nitride (SiN) films. However, use of these gases is to be reduced in accordance with COP3 guidelines, because their GWP is high, as shown in Table 1. SAMCO has studied the feasibility of COF_2 as an alternative to CF_4 and CH_3 .

COF $_2$ was developed in New Energy and Industrial Technology Development Organization (NEDO) project as an alternative to PFC. Some researchers reported that COF $_2$ was used to clean the chambers after Chemical Vapor Deposition (CVD), but COF $_2$ ' s use in etching has not been reported yet. We discovered that COF $_2$ can etch SiO $_2$ film, as it can function as a cleaning gas following CVD. Additionally, SAMCO has determined that COF $_2$ could be broken down into carbon monoxide (CO) and Flourine (F $_2$) easily, and that F $_2$ could serve as the precursor (preliminary, original) gas that, like CF $_4$, can be converted into CF $_3$, CF $_2$, 2F, etc. On the other hand, we should carefully observe the CO within the COF $_2$, as CO may lower the selectivity.

Experiment Results

We compared the etching performance of COF_2 , CF_4 , and CHF_3 , both on SiO_2 films and SiN films. SAMCO' s ICP Etching System, the RIE-200iP, was used in this experiment. The etching rate, selectivity, and surface smoothness were evaluated and are shown in Tables 2 and 3.

CF₄ showed the highest etch rate on the SiO₂ film, and the etch rates of COF₂ and CHF₃ on SiO₂ film were close. On the other hand, CHF₃ showed the best selectivity, as it will break down into carbon hydride) CH components, while COF₂ showed the worst result because it contained oxygen. Surfaces were smooth and no difference among the three gas processes was observed. Etch profiles cannot be evaluated quantitatively, but a selectivity of 1:1 or better suggests that all gases work well in transferring the mask shape onto SiO₂.

We achieved similar results to SiO_2 film etching experiments in SiN film etching, except that CHF₃ attained a significantly lower etch rate. The possible causes were disruption by hydrogen atoms and deposition by carbon hydride molecules

(CH). COF_2 and CF_4 showed close selectivity, and CHF_3 showed the lowest selectivity among the three gases. We observed no significant difference in surface smoothness and etch profile like the previous experiment on the SiO_2 films.

Conclusion

SAMCO has executed experiments to see whether or not COF₂ can serve as an alternative to CF₄ and CHF₃, which are global warming gases, and has concluded that COF₂ is not necessarily inferior to CF₄ and CHF₃ as an etching gas for SiO₂ and SiN. We learned that the selectivity in SiO₂ and SiN etching by COF₂ can be improved by adding hydrogen (H₂) and methane (CH₄) to the experiment of SiO₂ etching by CHF₃, and believe that COF₂ works well as an etching gas for SiO₂ etching and SiN etching. However, we should pay attention to the characteristics that result when COF₂ reacts with some metals and water.

Table 1. GWP (Global Warming Potential) data sheet [1]

Gas	GWP 100yr
CO ₂	1
CH4	25
N2O	298
SF6	22,800
NF3	17,200
CF4 (PFC-14)	7,390
C2F6 (PFC-116)	12,200
C3F8 (PFC-218)	8,830
CHF3 (HFC-23)	14,800
CH ₂ F ₂ (HFC-32)	675
COF2	1 [2]

Table 2. SiO₂ Etching Results

Gas	Etch Rate (nm/min)	Selectivity (SiO2/PR)	Surface
COF2	130.4	1.23	Good
CF4	165.2	1.69	Good
CHF3	130.0	2.96	Good

Table 3. SiN Etching Results

Gas	Etch Rate (nm/min)	Selectivity (SiN/PR)	Surface
COF2	127.0	1.11	Good
CF4	153.0	1.23	Good
CHF3	87.0	1.09	Good

References

[1] IPCC Fourth Assessment Report (AR4)

[2] Energy and Industrial Technology Development Organization (NEDO)